

Exploring the Role of Audio in Video Captioning

Yuhan Shen⁺, Linjie Yang^{*}, Longyin Wen^{*}, Haichao Yu^{*}, Ehsan Elhamifar⁺, Heng Wang^{*}

+ Northeastern University* ByteDance

7th MUltimodal Learning and Applications Workshop (MULA 2024)

Video Captioning

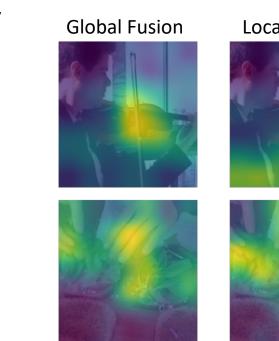
- Video Captioning: generate text descriptions of videos
- Modality: vision; audio; both
- Proposed: a pre-training framework for audio-visual video captioning

Caption: A baby fusses and cries while a woman talks and laughs.

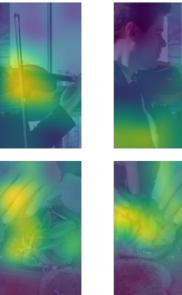
Caption: A little girl is pointing to pictures in a book while an adult talks to her.

Challenges

- Lack large-scale annotated datasets for video captioning pre-training
 - Use ASR transcripts as text supervision, e.g. HowTo100M
- ASR transcripts can be solely obtained from audio modality
 - Modality Balancing Pre-training
- Information exchange between audio and video modality
 - Local-global cross-modal fusion modules



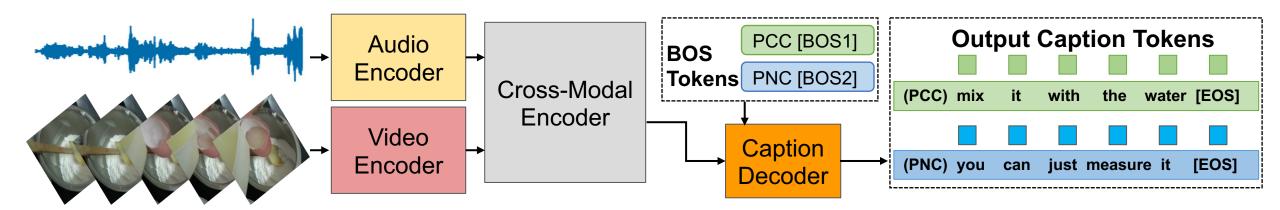
Local Fusion



1. A. Miech, et al. Howto100M: Learning a text-video embedding by watching hundred million narrated video clips. ICCV 2019.

Proposed Framework

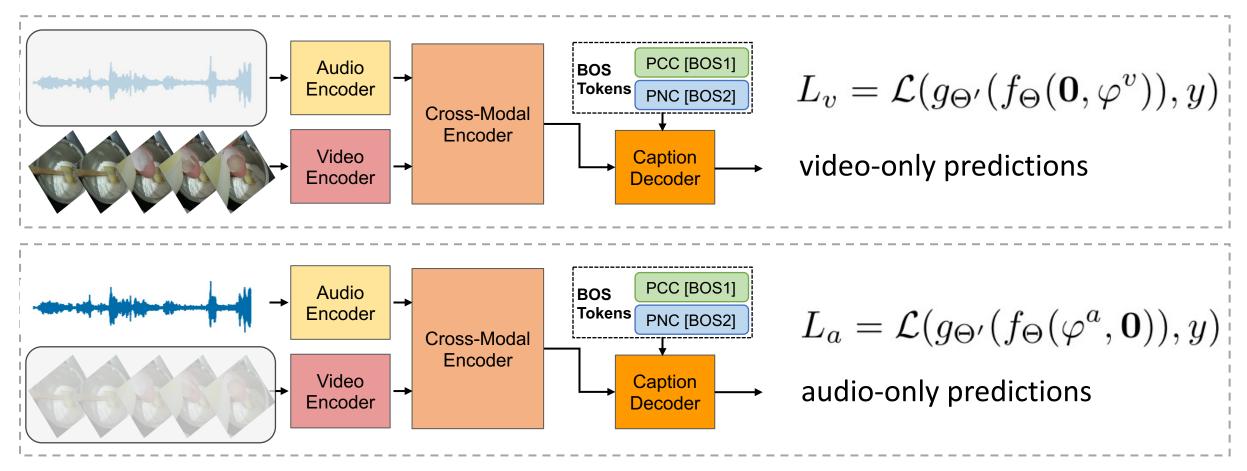
- Audio Encoder: Audio Spectrogram Transformer [1]
- Video Encoder: Video Swin Transformer [2]
- Cross-Modal Encoder: Local-Global Cross-Modal Fusion
- Caption Decoder: recursively generate captions
- Pre-training Task: Predict Current Caption (PCC); Predict Next Caption (PNC)



- 1. Y. Gong, et al. AST: Audio Spectrogram Transformer. Interspeech 2021.
- 2. Z. Liu, et al. Video swin transformer. CVPR 2022.

Modality Balanced Pre-training

- Multi-modal loss: $L = \mathcal{L}(g_{\Theta'}(f_{\Theta}(\varphi^a, \varphi^v)), y)$
- Mono-modal losses:



Modality Balanced Pre-training (MPB)

- Modality Balance Pre-training: $L_{pretrain} = L + w_a L_a + w_v L_v$
- The mono-modal weight is decided by how the modality is well utilized by model
- Mono-to-Multi Discrepancy (MMD) index:

$$G_a = (L_a - L)^2; G_v = (L_v - L)^2$$

• Update mono-modal weights via softmax over MMD:

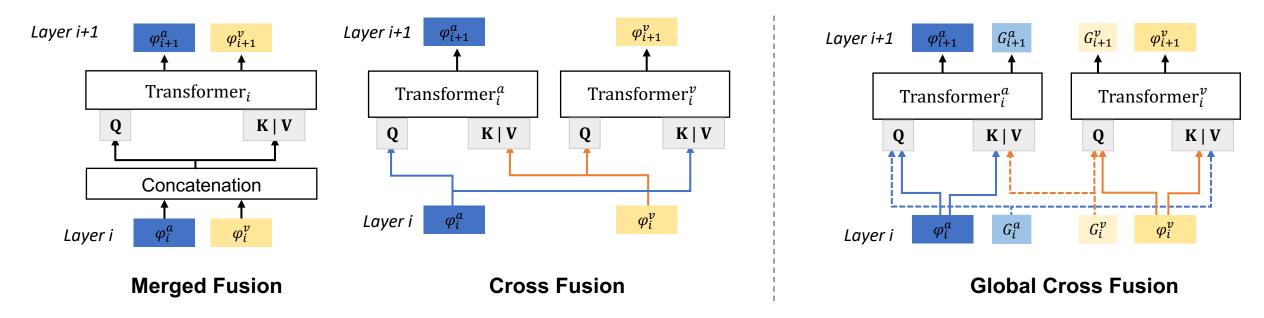
$$\tilde{w}_m^{(t)} = \frac{\exp\left(\alpha G_m^{(t)}\right)}{\sum_{m'} \exp\left(\alpha G_{m'}^{(t)}\right)}, m \in \{a, v\}$$

• Smooth during training:

$$w_m^{(t)} = \beta w_m^{(t-1)} + (1-\beta)\tilde{w}_m^{(t)}, m \in \{a, v\}$$

Cross-Modal Fusion

- Local fusion: merged fusion and cross fusion
 - capture local features such as words in the speech or objects in a video frame
- Global cross fusion: additional global tokens for cross-modal interaction
 - capture high-level concepts like sounds of laughter or people gathering on a street
- Local-global fusion: average of local fusion and global fusion
 - leverage multigranular information



Experiments

- MBP improves performance by a large margin on four datasets, and outperforms a multimodal pre-training baseline G-Blend [1]
- Adding PNC leads to a remarkable boost

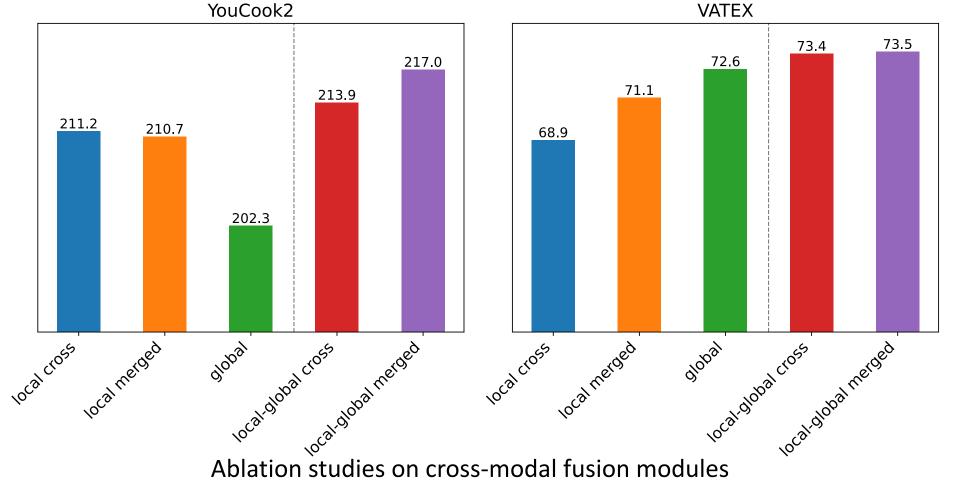
Pre-training Objective	YouCook2	MSRVTT	VATEX	ActivityNet
РСС	166.8	47.6	50.7	20.1
PCC+MBP	192.4	53.5	67.5	24.7
PCC+PNC	184.2	48.4	51.4	20.2
PCC+PNC+G-Blend [1]	208.5	55.1	68.7	25.3
PCC+PNC+MBP	217.0	57.0	73.5	26.1

Ablation studies on multi-modal pre-training. MBP: Modality Balanced Pre-training; PCC: Predict Current Caption; PNC: Predict Next Caption.

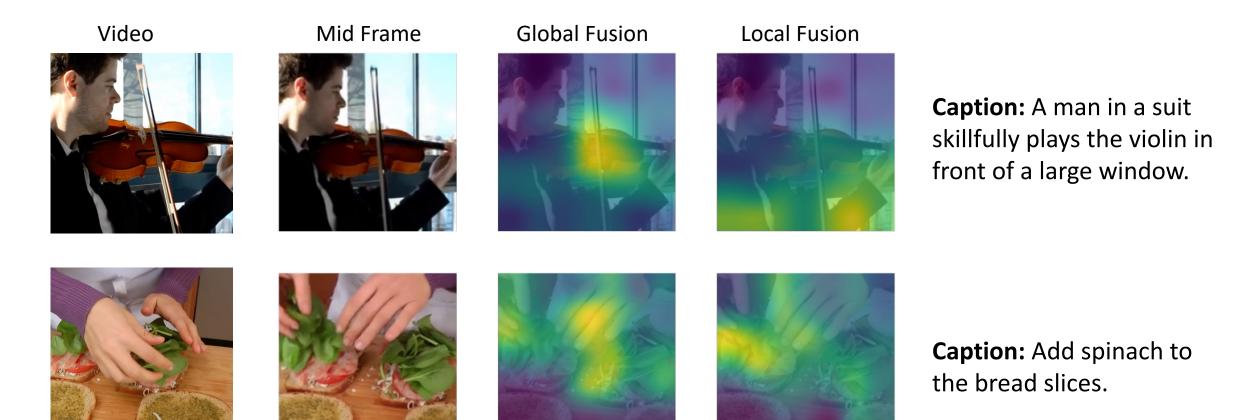
1. W. Wang, et al. What makes training multi-modal classification networks hard? CVPR 2020.

Experiments

• Local-global fusion modules perform best by capturing both global and local audio information



Attention Maps



ASR: *"I'm just going to put on a handful of some fresh, clean baby spinach."*

Qualitative Results

Audio Description: [Baby Crying] [Woman Speech: oh, no baby] [Woman laughter]

GroundTruth: A baby fusses and cries while a woman talks and laughs. Video-only: A baby is laying down and yawning while being held by a person. Video+Text: A baby sneezes and then sneezes several times. Video+Audio: A woman is laughing and talking to a baby and the baby is crying.

Audio Description: [Girl: What's this? Pencil.] [Man: Pencil.] [Girl: What's this?] [Man: I don't know]

GroundTruth: A little girl is pointing to pictures in a book while an adult talks to her.

Video-only: A baby is sitting on a couch looking through a children's book. **Video+Text**: A little boy is holding a pencil in front of a pencil sharpener. Video+Audio: A little girl is reading a book while a man talks to her.

Thank you!

Exploring the Role of Audio in Video Captioning

Yuhan Shen⁺, Linjie Yang^{*}, Longyin Wen^{*}, Haichao Yu^{*}, Ehsan Elhamifar⁺, Heng Wang^{*} ⁺ Northeastern University * ByteDance

7th MUltimodal Learning and Applications Workshop (MULA 2024)