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Video-Narration Alignment
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CLIP-based Dual Encoder Global-Local Contrastive Learning

VISOR-NVOS Benchmark

• Narration-based Video Object Segmentation (NVOS): 
segment object instances mentioned in narrations for 
egocentric videos

• Referred Object-Segment Aligner (ROSA):  a weakly-
supervised framework for NVOS without spatial annotations

• VISOR-NVOS: an NVOS benchmark with newly-collected 
video clip narrations and associated segmentation masks

• Generate mask proposals for video clips using SAM [1]; extract object phrases from narrations
• CLIP-based Dual Encoder: obtain context-aware representations for segmentation masks 

and object phrases via pretrained CLIP [2] models
• Global-Local Contrastive Learning: contrastive training via global video-narration alignment 

(VNA) and local region-phrase alignment (RPA)

• Annotate object-based narrations for video clips from VISOR [3] dataset
• 7,561 validation videos and 7,051 test videos
• 37,170 referred objects with associated segmentation masks
• Average number of groundable objects per narration: 2.54

Qualitative Results

Quantitative Results

Comparison with Related Tasks
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𝒥: pixel-wise IoU; ℱ: F measure of mask boundaries; 𝒥&ℱ: average of 𝒥 and ℱ
VOST [4]: an auxiliary benchmark of grounding objects under complex transforms
𝒥𝑢𝑛𝑖𝑜𝑛: 𝒥 with the union of all instances; 𝒥𝑖𝑛𝑠: 𝒥 with the best matched instance

Ablation Studies

“The person puts flour
into the bowl from the 

flour package.”
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in a pan with a  spoon.”
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(a) More phrase occurrences in training set 
lead to more gains; ROSA generalizes 
well to unseen objects (+2.7%)

(b) Adding contexts improves for both 
exhaustive (+1.2%) and inexhaustive 
(+2.1%) objects

(c) Both VNA and RPA are effective at 
learning better region-phrase similarities

(a) Phrase occurrences in training set

(b) Context in Phrase Encoder (c) Global-Local Contrastive Learning
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