

Motivation

We introduce Semi-Weakly-Supervised Learning (SWSL) of complex actions: train an action segmentation model using a small number of weakly-labeled vide and a large number of *unannotated* videos of procedural tasks (with task labels).

• Key Observation: transcripts of unlabeled videos often have small but nonzero distances to the transcripts of the weakly-labeled videos from the same task.

- Contributions • Propose a Semi-Weakly-Supervised Learning scheme for action segmentation from instructional videos by using a small set of weakly-labeled videos and a large set of unlabeled videos.
- It can work with any weakly-supervised method.
- Develop a Flexible Transcript Prediction method to recover the transcripts of unlabeled videos given the predicted probabilities.
- Develop a **Soft Restricted Edit** loss to find weak alignment between transcripts while allowing insertion, deletion, substitution, and **adjacent transposition**.
- Significantly improve the performance by adding unlabeled videos for training. Code is available on https://github.com/Yuhan-Shen/SWSL

- Training Objective: $\mathcal{L}_{swsl} = \mathcal{L}_{weak} + \rho \mathcal{L}_{sre}$.
- Self Training: iteratively generate pseudo-transcripts for unlabeled videos.

Prior Work

- Fully-supervised methods: framewise annotation; expensive annotation cost.
- Weakly-supervised methods: an ordered (or unordered) list of actions in each video; reduce annotation cost, but still require watching the whole videos.
- Unsupervised methods: remove annotation cost; limited capability.

Semi-Weakly-Supervised Learning of Complex Actions from Instructional Task Videos

Yuhan Shen

e-mail: shen.yuh@northeastern.edu

Khoury College of Computer Sciences, Northeastern University, Boston, USA

Flexible Transcript Prediction

• Predict the transcript of unannotated videos by **maximizing the likelihood**:

$$\prod_{i=1}^{n}p_{j,a_i}$$
 s.t. t

• Predict transcript with flexible length by dynamic programming:

$$\min_{\{t_i\},\{a_i\},L} - rac{1}{T} \sum_{i=1}^L \sum_{j=t_{i-1}+1}^{t_i} \log p_{j,a_i} + \lambda L \, \mathrm{s.\,t.\,} t_0 =$$

Soft Restricted Edit (SRE) Distance

- A differentiable loss function that measures the distance between two sequences.
- Allow insertion, deletion, substitution and **adjacent transposition**.
- Minimize the distance between the transcript of weakly-labeled videos and the transcript of unlabeled videos predicted by **Flexible Transcript Prediction**.
- Difference among three sequence alignment methods:

• Illustration of Restricted Edit Distance:

	p	a	r	S
substitution	Ţ			
	e	a	r	S
transposition		t	•	
	е	r	a	S
insertion				
	е	r	a	S

• Soft Restricted Edit Distance:

$e_{i,j} = \min_{\beta} \langle$	$e_{i-1,j} + c_D$, (deletion)
	$e_{i,j-1} + c_I$, (insertion)
	$e_{i-1,j-1} + \delta_{i-1,j-1}$, (substitution)
	$e_{i-2,i-2} + \delta_{i-2,i-1} + \delta_{i-1,i-2} + c_T (\forall i)$

We develop efficient forward and backward algorithms to allow end-to-end learning:

Algorithm 1: Forward Propagation for SRE

	input : Pairwise cost matrix $\boldsymbol{\Delta} = [\delta_{i,j}] \in \mathbb{R}^{L'}$
1	$e_{i,1} = (i-1) \cdot c_D, i \in \{1, 2, \dots, L'+1\}$
2	$e_{1,j} = (j-1) \cdot c_I, j \in \{2, \dots, L+1\}$
3	for $i \leftarrow 2$ to $L' + 1$ do
4	for $j \leftarrow 2$ to $L + 1$ do
5	update $e_{i,j}$ via (3);
	output : SRE Loss, $\mathcal{L}_{sre} = e_{L'+1,L+1}$

Ehsan Elhamifar

e-mail: e.elhamifar@northeastern.edu

 $t_0=0,\;t_L=T.$

 $0, t_L = T, \ \ell_{min} < L < \ell_{max},$ (2)

r	a	S	е	r
2	3	4	5	6
2	3	4	5	6
2	2	3	4	5
2	2	3	4	4
3	3	2	3	4
4	4	3	2	3
	r 2 2 2 3 4	ra2322223344	ras234234223223332443	rase234523452234223433234432

(3)

 $, j \geq 3$). (transposition)

 $'^{\times L}$; $c_D, c_I, c_T, \beta \geq 0$.

Percent	tage

			MuCon				CDFL					
	WP UP		Breakfast		CrossTask		Breakfast		CrossTask			
			MoF	IoU	MoF	IoU	F1	MoF	IoU	MoF	IoU	F1
WSL	1%	0	11.0	13.5	38.2	14.6	2.6	10.9	16.9	20.7	8.6	3.0
SWSL+Self	1%	99%	25.0	29.8	48.1	17.9	8.9	32.4	29.5	21.8	9.2	9.9
WSL	2%	0	12.9	14.8	44.0	15.8	5.3	10.9	17.4	20.5	8.6	5.3
SWSL+Self	2%	98%	26.7	30.6	44.6	17.8	11.3	35.4	30.0	21.4	9.1	10.1
WSL	5%	0	23.1	25.8	42.3	16.1	8.3	13.4	19.7	20.4	8.7	5.1
SWSL+Self	5%	95%	32.5	31.7	50.6	18.3	11.5	39.6	31.3	22.6	9.1	11.3
WSL	10%	0	28.0	28.8	42.1	16.7	9.9	20.4	20.9	23.2	9.0	7.8
SWSL+Self	10%	90%	36.3	33.4	49.0	18.0	12.1	40.4	32.4	24.0	9.3	11.7
WSL	20%	0	35.2	33.4	44.4	17.7	11.0	31.7	26.4	23.6	9.0	8.1
SWSL+Self	20%	80%	39.8	36.1	54.5	19.3	11.8	43.5	33.0	24.8	9.0	13.2
WSL	100%	0	48.5^{\dagger}	39.1*	48.4*	21.0*	16.7*	50.2*	35.9*	31.5*	13.2*	18.8*

• Training Process: IoU of different methods on the Breakfast test set as a function of the number of training epochs. Left: SWSL+Self. Right: SWSL.

Experiments

• Networks: MuCon (Souri et al. TPAMI'21) and CDFL (Li et al. ICCV'19). • Quantitative Results: WP: Weakly-labeled video Percentage. UP: Unlabeled video

• Ablation Studies: left: effect of SRE loss and self-training (left); right: comparison between SRE loss and SE loss (without allowing adjacent transposition).